Abstract

Bi2O2CO3/In(OH)3 (BON) photocatalysts were synthesized by a one-pot method and loaded onto polyvinylidene fluoride (PVDF) membranes to obtain a Bi2O2CO3/In(OH)3/PVDF (BON-M) catalytic membrane system. The catalytic membranes demonstrated complete degradation of tetracycline within 40 min under visible light. They demonstrated robust photocatalytic activity across a broad pH range (5–11) and in the presence of coexisting ions. The membranes demonstrated excellent self-cleaning performance. Following exposure to light, the irreversible contamination decreased from 27.1% to 4.7% and the membrane’s permeability was almost completely restored. Moreover, the charge transfer mechanism at the S-scheme heterojunction interface of BON was demonstrated by Density functional theory and in-situ X-ray Photoelectron Spectroscopy characterisation, and the active sites involved in tetracycline’s degradation were identified. Meanwhile, the mechanism of the “anemone effect” of BON-M was demonstrated in conjunction with Electron paramagnetic resonance, and the intrinsic Some factors enhancing the membranes’ photocatalytic activity are specified.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.