Abstract

Implantable devices on the tumor tissue as a local treatment are able to work in situ, which minimizes systemic toxicities and adverse effects. Here, we demonstrated an implantable self-charging battery that can regulate tumor microenvironment persistently by the well-designed electrode redox reaction. The battery consists of biocompatible polyimide electrode and zinc electrode, which can consume oxygen sustainably during battery discharge/self-charge cycle, thus modulating hypoxia level in tumor microenvironment. The oxygen reduction in battery leads to the formation of reactive oxygen species, showing 100% prevention on tumor formation. Sustainable consumption of oxygen causes adequate intratumoral hypoxic conditions over the course of 14 days, which is helpful for the hypoxia-activated prodrugs (HAPs) to kill tumor cells. The synergistic effect of the battery/HAPs can deliver more than 90% antitumor rate. Using redox reactions in electrochemical battery provides a potential approach for the tumor inhibition and regulation of tumor microenvironment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.