Abstract

Chang <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">'</sup> E-2 (CE-2) lunar orbiter is the second robotic orbiter in the Chinese Lunar Exploration Program. The charge-coupled-device (CCD) camera equipped on the CE-2 orbiter acquired stereo images with a resolution of less than 10 m and global coverage. High-precision topographic mapping with CE-2 CCD stereo imagery is of great importance for scientific research, as well as for the landing preparation and surface operation of the incoming Chang <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">'</sup> E-3 lunar rover. Uncertainties in both the interior orientation (IO) model and exterior orientation (EO) parameters of the CE-2 CCD camera can affect mapping accuracy. In this paper, a self-calibration bundle adjustment method is proposed to eliminate these effects by adding several parameters into the IO model and fitting EO parameters using a third-order polynomial. The additional IO parameters and the EO polynomial coefficients are solved as unknowns along with ground points in the adjustment process. A series of strategies is adopted to ensure the robustness and reliability of the solution. Experimental results using images from two adjacent tracks indicated that this method effectively reduced the inconsistencies in the image space from approximately 20 pixels to subpixel. Topographic profiles generated using unadjusted and adjusted CE-2 data were compared with Lunar Orbiter Laser Altimeter data. These comparisons indicated that the local topographies generated after bundle adjustments, which reduced elevation differences by 9-10 m, were more consistent with LOLA data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.