Abstract

Self-assembly is a powerful approach in molecular engineering for biomedical applications, in particular for creating self-assembling prodrugs. Here, we report a self-assembling prodrug of the anticancer drug gemcitabine (Gem) based on amphiphilic dendrimer approach. The prodrug reported in this study demonstrates high drug loading (40%) and robust ability to self-assemble into small nanomicelles, which increase the metabolic stability of Gem and enable entry into cells via endocytosis, hence bypassing transport-mediated uptake. In addition, this prodrug nanosystem exhibited an effective pH- and enzyme-responsive release of Gem, resulting in enhanced anticancer activity and reduced toxicity. Harboring advantageous features of both prodrug- and nanotechnology-based drug delivery, this self-assembling Gem prodrug nanosystem constitutes a promising anticancer candidate. This study also offers new perspectives of the amphiphilic dendrimer nanoplatforms for the development of self-assembling prodrugs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call