Abstract

A low-cost floating film transfer (FTM) method processed gold-doped poly(3-hexylthiophene-2,5-diyl) (P3HT)-based low-voltage organic thin-film transistor (OTFT) has been fabricated and used for white light sensing. The OTFT fabrication uses a solution-processed spin casting technique for high- <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\textit{k}$</tex-math> </inline-formula> dielectric growth and an FTM method for metal nanoparticle-doped organic semiconductor growth. The developed metal nanoparticle-doped organic semiconductor using FTM has the advantage of high crystallinity, self-assembly, and cost-efficient minimal wastage over other conventional film deposition techniques. The synthesized high- <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\textit{k}$</tex-math> </inline-formula> dielectric film, synthesized by the low-temperature UV-cured method, offers a high dielectric capacitance of 390 nF/cm <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$^{\text{2}}$</tex-math> </inline-formula> , a low leakage current density of 0.1 <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\mu$</tex-math> </inline-formula> A/cm <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$^{\text{2}}$</tex-math> </inline-formula> at <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$-$</tex-math> </inline-formula> 5 V, and smooth film with a surface roughness of 0.724 nm, making it appropriate for low-voltage-driven phototransistor. The device results in a photosensitivity of 248%, a high photoresponsivity of 4.41 A/W, and a specific detectivity of 3.35 <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\times$</tex-math> </inline-formula> 10 <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$^{\text{11}}$</tex-math> </inline-formula> Jones with a low response/recovery time of 53/85 ms at 204 <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\mu$</tex-math> </inline-formula> W/cm <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$^{\text{2}}$</tex-math> </inline-formula> white light irradiation. This article explains the detailed process of device fabrication and its performance in white light sensing applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call