Abstract

Self-assembled coordination cages composed of metal cations and ligands can enhance the hydrolysis of non-covalently trapped amides in mild conditions as demonstrated in recent experiments. Here, we reveal the mechanism that accelerates base-catalyzed amide hydrolysis inside the octahedral coordination cage, by means of a quantum mechanics/molecular mechanics/polarizable continuum model. The calculated activation barrier of the nucleophilic OH- addition to a planar diaryl amide drastically decreases in the cage because of mechanical bond-twisting due to host-guest π-stacking. By contrast, the OH- addition to an N-acylindole, which possesses a twisted amide bond in bulk water, is not enhanced in the cage. Even though the cage hinders OH- collisions with the confined amide, the cage can twist the dihedral angle of the planar amide so as to mimic the transition state of OH- addition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.