Abstract

Adaptive infinite impulse response (IIR), or recursive, filters are less attractive mainly because of the stability and the difficulties associated with their adaptive algorithms. Hyperstability theory when simplified and adapted for digital signal processing offers a new class of IIR filters, simple hyperstable adaptive recursive filters (SHARFs), which is directly related to strictly positive real (SPR) transfer functions. One of the most important drawbacks of the SHARF algorithm is the presence of the unknown denominator in the transfer function that must be SPR in order to ensure convergence. In this paper, SHARF is investigated with SPR transfer functions designed without any priori knowledge of the filter parameters by the pole–zero placement on the unit circle method and made self-adjusting. To demonstrate self-adjustment of the algorithm, SHARF algorithm using constraint least-mean square (LMS) method is applied to a pure four-pole autoregressive process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.