Abstract

Although many adaptive techniques for active vibration reduction have been designed to achieve optimal performance in practical applications, few are related to reinforcement learning (RL). To explore the best performance of the active vibration reduction system (AVRS) without prior knowledge, a self-adaptive parameter regulation method based on the DDPG algorithm was examined in this study. The DDPG algorithm is unsuitable for a random environment and prone to reward-hacking. To solve this problem, a reward function optimization method based on the integral area of the decibel (dB) value between transfer functions was investigated. Simulation and graphical experimental results show that the optimized DDPG algorithm can automatically track and maintain optimal control performance of the AVRS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.