Abstract

This paper presents a self-adaptive autonomous online learning through a general type-2 fuzzy system (GT2 FS) for the motor imagery (MI) decoding of a brain-machine interface (BMI) and navigation of a bipedal humanoid robot in a real experiment, using electroencephalography (EEG) brain recordings only. GT2 FSs are applied to BMI for the first time in this study. We also account for several constraints commonly associated with BMI in real practice: 1) the maximum number of EEG channels is limited and fixed; 2) no possibility of performing repeated user training sessions; and 3) desirable use of unsupervised and low-complexity feature extraction methods. The novel online learning method presented in this paper consists of a self-adaptive GT2 FS that can autonomously self-adapt both its parameters and structure via creation, fusion, and scaling of the fuzzy system rules in an online BMI experiment with a real robot. The structure identification is based on an online GT2 Gath–Geva algorithm where every MI decoding class can be represented by multiple fuzzy rules (models), which are learnt in a continous (trial-by-trial) non-iterative basis. The effectiveness of the proposed method is demonstrated in a detailed BMI experiment, in which 15 untrained users were able to accurately interface with a humanoid robot, in a single session, using signals from six EEG electrodes only.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.