Abstract

Fringe projection profilometry (FPP) has been extensively applied in various fields for its superior fast speed, high accuracy and high data density. However, measuring objects with highly reflective surfaces or high dynamic range surfaces remains challenging when using FPP. A number of multiple exposure image fusion methods have been proposed and successfully improved measurement performance for these kinds of objects. Normally, these methods have a relatively fixed sequence of exposure settings determined by practical experiences or trial and error experiments, which may decrease the efficiency of the entire measurement process and may have less robustness with regard to various environmental lighting conditions and object reflective properties. In this paper, a novel self-adaptive multiple exposure image fusion method is proposed with two areas of improvement relating to adaptively optimizing the initial exposure and the exposure sequence. First, by introducing the theory of information entropy, combined with an analysis of the characterization of fringe image entropy, an adaptive initial exposure searching method is proposed. Then, an exposure sequence generation method based on dichotomy is further described. On the basis of these two improvements, a novel self-adaptive multiple exposure image fusion method for FPP as well as its detailed procedures are provided. Experimental results validate the performance of the proposed self-adaptivity multiple exposure image fusion method via the measurement of objects with differences in surface reflectivity under different ambient lighting conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.