Abstract

In the reliability-based design optimization (RBDO), the Advanced mean value (AMV) method sometimes yields unstable results such as chaotic and periodic solutions for highly nonlinear probabilistic constraints. The chaos control (CC), modified chaos control (MCC) and adaptive chaos control (ACC) methods are more robust than the AMV but inefficient for some moderately nonlinear performance functions. In this paper, a self-adaptive modified chaos control (SMCC) method is developed based on a dynamical control factor to improve the efficiency of MCC for reliability analysis and RBDO. The self-adaptive control factor is dynamically computed based on the new and previous results. The efficiency and robustness of the proposed SMCC are compared with the AMV, CC, MCC and ACC methods using several nonlinear structural/mathematical performance functions and RBDO problems. The results illustrate that the SMCC is more efficient than CC, MCC, and ACC methods, and also more robust than AMV method for highly nonlinear problems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.