Abstract

Recently, a new meta-heuristic optimization algorithm–harmony search (HS) was developed, which imitates the behaviors of music improvisation. Although several variants and an increasing number of applications have appeared, one of its main difficulties is how to select suitable parameter values. In this paper, a self-adaptive harmony search algorithm (SaHS) proposed. In this algorithm, we design a new parameter setting strategy to directly tune the parameters in the search process, and balance the process of exploitation and exploration. Finally, we use SaHS to solve unconstrained optimization problems so as to profoundly study and analyze the performance of the SaHS. The results show that the SaHS has better convergence accuracy than the other three harmony search algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.