Abstract

Deep neural networks (DNNs) have famously been applied in various ordinary duties. However, DNNs are sensitive to adversarial attacks which, by adding imperceptible perturbation samples to an original image, can easily alter the output. In state-of-the-art white-box attack methods, perturbation samples can successfully fool DNNs through the network gradient. In addition, they generate perturbation samples by only considering the sign information of the gradient and by dropping the magnitude. Accordingly, gradients of different magnitudes may adopt the same sign to construct perturbation samples, resulting in inefficiency. Unfortunately, it is often impractical to acquire the gradient in real-world scenarios. Consequently, we propose a self-adaptive approximated-gradient-simulation method for black-box adversarial attacks (SAGM) to generate efficient perturbation samples. Our proposed method uses knowledge-based differential evolution to simulate gradients and the self-adaptive momentum gradient to generate adversarial samples. To estimate the efficiency of the proposed SAGM, a series of experiments were carried out on two datasets, namely MNIST and CIFAR-10. Compared to state-of-the-art attack techniques, our proposed method can quickly and efficiently search for perturbation samples to misclassify the original samples. The results reveal that the SAGM is an effective and efficient technique for generating perturbation samples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.