Abstract

Most of the potential applications of memristive devices adopt crossbar architecture for ultra-high density. One of the biggest challenges of the crossbar architecture is severe residue leakage current (sneak path) issue. A possible solution is introducing a selector device with strong nonlinear current–voltage (I–V) characteristics in series with each memristor in crossbar arrays. Here, we demonstrate a novel selector device based on graphene–oxide heterostructures, which successfully converts a typical linear TaO x memristor into a nonlinear device. The origin of the nonlinearity in the heterostructures is studied in detail, which highlights an important role of the graphene–oxide interfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.