Abstract
A fluorophore modulation with sodium dodecyl sulphate (SDS) assemblies for the selective and sensitive sensing of Fe3+ ions in aqueous solution is illustrated in this work. Emission spectral characteristics of fluorescent molecule, propranolol (PPH) was intact in presence of metal ions. While on modulation with SDS assemblies, PPH was transformed into a tuneable sensor for Fe3+ ions. This sensor ensemble was not only highly sensitive towards Fe3+ ions in aqueous solution with detection limits lower than 3μM but also possess high discriminating efficiency in presence of other metal ions like Cu2+, Pb2+, Zn2+, Ni2+, Fe2+, Cd2+, Co2+, Al3+, Mg2+, Hg2+ and Mn2+. The electrostatic interaction of the anionic group of surfactants with the metal cations significantly increases the communication between metal ions and PPH moiety which results in the quenching of PPH fluorescence. We have employed fluorescence steady state and lifetime studies to understand the metal sensing behaviour of the PPH-SDS sensor system. Principal component analysis (PCA) was used to evaluate the discriminative ability of the developed sensor system towards Fe3+ ions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.