Abstract

A selective tumor-penetrating strategy generally exploits tumor-targeted ligands to modify drugs so that the conjugate preferentially enters tumors and subsequently undergoes transcellular transport to penetrate tumors. However, this process shields ligands from their corresponding targets on the cell surface, possibly inducing an off-target effect during drug penetration at the tumor-normal interface. Herein, we first describe a selective tumor-penetrating drug (R11-phalloidin conjugates) for intravesical therapy of bladder cancer. The intravesical conjugates rapidly translocated across the mucus layer, specifically bound to tumors, and infiltrated throughout the tumor via direct intercellular transfer. Notably, direct transfer from normal cells to tumor cells was unidirectional because the pathways required for direct transfer, termed F-actin-rich tunneling nanotubes, were more unidirectionally extended from normal cells to tumor cells. Moreover, the intravesical conjugates displayed strong anticancer activity and well-tolerated biosafety in murine orthotopic bladder tumor models. Our study demonstrated the potential of a selective tumor-penetrating conjugate for effective intravesical anticancer therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.