Abstract
SummaryMixture regression models have been widely used in business, marketing and social sciences to model mixed regression relationships arising from a clustered and thus heterogeneous population. The unknown mixture regression parameters are usually estimated by maximum likelihood estimators using the expectation–maximisation algorithm based on the normality assumption of component error density. However, it is well known that the normality‐based maximum likelihood estimation is very sensitive to outliers or heavy‐tailed error distributions. This paper aims to give a selective overview of the recently proposed robust mixture regression methods and compare their performance using simulation studies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: International Statistical Review
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.