Abstract

The current understanding about ethanol effects on the ligand-gated ion channel (LGIC) superfamily has been restricted to identify potential binding sites within transmembrane (TM) domains in the Cys-loop family. Here, we demonstrate a key role of the TM3-4 intracellular loop and G betagamma signaling for potentiation of glycine receptors (GlyRs) by ethanol. We discovered 2 motifs within the large intracellular loop of the GlyR alpha(1) subunit that are critical for the actions of pharmacological concentrations of ethanol. Significantly, the sites were ethanol-specific because they did not alter the sensitivity to general anesthetics, neurosteroids, or longer n-alcohols. Furthermore, G betagamma scavengers selectively attenuated the ethanol effects on recombinant and native neuronal GlyRs. These results show a selective mechanism for low-ethanol concentration effects on the GlyR and provide a mechanism on ethanol pharmacology, which may be applicable to other LGIC members. Moreover, these data provide an opportunity to develop new genetically modified animal models and novel drugs to treat alcohol-related medical concerns.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.