Abstract
Picornavirus internal ribosome entry site (IRES) elements direct cap-independent internal initiation of protein synthesis within mammalian cells. These RNA elements (about 450 nt) contain extensive secondary structure including a hairpin loop with a conserved GNRA motif. Such loops are important in RNA-RNA and RNA-protein interactions. Plasmids that express dicistronic mRNAs of the structure GUS/IRES/HOOK have been constructed. The HOOK sequence encodes a cell-surface-targeted protein (sFv); the translation of this open reading frame within mammalian cells from these dicistronic mRNAs requires a functional IRES element. Cells that express the sFv can be selected from nonexpressing cells. A pool of up to 256 mutant encephalomyocarditis virus IRES elements was generated by converting the wild-type hairpin loop sequence (GCGA) to NNNN. Following transfection of this pool of mutants into COS-7 cells, plasmids were recovered from selected sFv-expressing cells. These DNAs were amplified in Escherichia coli and transfected again into COS-7 cells for further cycles to enrich for plasmids encoding functional IRES elements. The sequence of individual selected IRES elements was determined. All functional IRES elements had a tetraloop with a 3' terminal A residue. Optimal IRES activity, assayed in vitro and within cells, was obtained from plasmids encoding an IRES with the hairpin loop sequence fitting a RNRA consensus. In contrast, IRES elements containing YCYA tetraloops were severely defective.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.