Abstract

An ion trap source has been designed for use with time-of-flight (TOF) mass analysis. Two thin diaphragms make up a segmented ring electrode; the end cap electrodes are planar wire mesh. The potential field produced by the rf voltage applied between the ring and end cap electrodes resembles that of the cylindrical ion trap. The trapped ion population for ions created by electron impact exhibits linear growth against a first-order loss that has a time constant of about 50 µs; no ion loss occurs when the electron beam is off. The observed value of q z at low-mass cutoff for rf ion storage is -0.84. Pulsed extraction of all ions is accomplished by switching the trap electrodes from rf to voltages required to provide a linear dc extraction field. The TOF flight path includes a wide energy range reflectron. Better than unit mass resolution is achieved through m/z 500 without collisional ion cooling. With an extraction rate of 1 kHz and a recording rate of 4 spectra per second, a linear working curve is obtained between 36 pg and 18 ng of chlorobenzene delivered chromatographically. The system has demonstrated the potential to achieve a very high sample utilization efficiency at high spectral generation rates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.