Abstract

ObjectiveSoybean seed development is negatively impacted by elevated temperatures during seed fill, which can decrease seed quality and economic value. Prior germplasm screens identified an exotic landrace able to maintain ~ 95% seed germination under stress conditions that reduce germination dramatically (> 50%) for typical soybean seeds. Seed transcriptomic analysis was performed for two soybean lines (a heat-tolerant landrace and a typical high-yielding adapted line) for dry, mature seed, 6-h imbibed seed and germinated seed. Seeds were produced in two environments: a typical Midwestern field and a heat stressed field located in the Midsouth soybean production region.ResultsTranscriptomic analysis revealed 23–30K expressed genes in each seed tissue sample, and differentially expressed genes (DEGs) with ≥ twofold gene expression differences (at q-value < 0.05) comprised ~ 5–44% of expressed genes. Gene ontology (GO) enrichment analysis on DEGs revealed enrichment in heat-tolerant seeds for genes annotated for general and temperature-specific stress, as well as protein-refolding. DEGs were also clustered in modules using weighted co-expressed gene network analysis, which were examined for enrichment of GO biological process terms. Collectively, our results provide new and valuable insights into this unique form of genetic abiotic stress tolerance and to soybean seed physiological responses to elevated temperatures.

Highlights

  • differentially expressed genes (DEG) were clustered in modules using weighted co-expressed gene network analysis, which were examined for enrichment of Gene ontology (GO) biological process terms

  • We examined three soybean seed germination stages: (1) dry, mature seed; (2) imbibed seed; and (3) germinated seed and contrasted two soybean genotypes which differ in their tolerance to the impact of elevated temperature on seed quality, using seed produced in two environments differing in abiotic stress: (A) a lower temperature, Midwest location; and (B) the high temperature conditions of the Early Soybean Production System (ESPS)

  • We contrasted two genotypes which differ in terms of tolerance to high temperature stress during seed development, which were produced under two distinct temperature stress field locations

Read more

Summary

Results

Transcriptomic analysis revealed 23–30K expressed genes in each seed tissue sample, and differentially expressed genes (DEGs) with ≥ twofold gene expression differences (at q-value < 0.05) comprised ~ 5–44% of expressed genes. Gene ontology (GO) enrichment analysis on DEGs revealed enrichment in heat-tolerant seeds for genes annotated for general and temperature-specific stress, as well as protein-refolding. DEGs were clustered in modules using weighted co-expressed gene network analysis, which were examined for enrichment of GO biological process terms. Our results provide new and valuable insights into this unique form of genetic abiotic stress tolerance and to soybean seed physiological responses to elevated temperatures

Introduction
Main text
Conclusions
Limitations
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call