Abstract
Introduction: The attacks on IoT systems are increasing as the devices and communication networks are progressively integrated. If no attacks are found in IoT for a long time, it will affect the availability of services that can result in data leaks and can create a significant impact on the associated costs and quality of services. Therefore, the attacks and security vulnerability in the IoT ecosystem must be detected to provide robust security and defensive mechanisms for real-time applications. Method: This paper proposes an analytical design of an intelligent attack detection framework using multiple machine learning techniques to provide cost-effective and efficient security analysis services in the IoT ecosystem. Result: The performance validation of the proposed framework is carried out by multiple performance indicators. Conclusion: The simulation outcome exhibits the effectiveness of the proposed system in terms of accuracy and F1-score for the detection of various types of attacking scenarios.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Recent Advances in Computer Science and Communications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.