Abstract

Due to the uniqueness of the underwater environment, traditional data aggregation schemes face many challenges. Most existing data aggregation solutions do not fully consider node trustworthiness, which may result in the inclusion of falsified data sent by malicious nodes during the aggregation process, thereby affecting the accuracy of the aggregated results. Additionally, because of the dynamically changing nature of the underwater environment, current solutions often lack sufficient flexibility to handle situations such as node movement and network topology changes, significantly impacting the stability and reliability of data transmission. To address the aforementioned issues, this paper proposes a secure data aggregation algorithm based on a trust mechanism. By dynamically adjusting the number and size of node slices based on node trust values and transmission distances, the proposed algorithm effectively reduces network communication overhead and improves the accuracy of data aggregation. Due to the variability in the number of node slices, even if attackers intercept some slices, it is difficult for them to reconstruct the complete data, thereby ensuring data security.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call