Abstract
Vehicular communication is one of the essential technologies for increasing road safety, traffic efficiency, and comfort for pedestrians and drivers. In this context, the internet of vehicles is an emerging paradigm. However, with advances in vehicular communication, security threats have also emerged. Several vulnerabilities exist in vehicular communications, including Denial of Service (DoS), black hole attacks, and fabrication attacks. A malicious attack alters the packet information in a fabrication attack, causing congestion and high delays in the vehicular network. We propose two algorithms to protect the routing protocols in a vehicle-to-vehicle scenario against several attacks that target confidentiality, authentication, privacy, and integrity. The first algorithm detects the malicious behavior of each vehicle by calculating the percentage of modified destination addresses. If it exceeds a predetermined threshold, this vehicle is classified as malicious. Otherwise, it is a normal vehicle. The second algorithm detects malicious modifications based on the Signal to Interference Ratio (SIR) by monitoring the SIR value, adjusting the distance, altering the power received, and changing the transmitted power value. We performed simulations using the SUMO 0.22 simulator and Network Simulator (NS). The results obtained show an improvement in End-to-End (E2E) delay, Packet Delivery Ratio (PDR), and reduced overhead.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.