Abstract

A new asymmetric optical double image encryption algorithm is proposed, which combines phase truncation and singular value decomposition. The plain text is encrypted with two-stage phase keys to obtain a uniformly distributed cipher text and two new decryption keys. These keys are generated during the encryption process and are different from encryption keys. It realizes asymmetric encryption and improves the security of the system. The unscrambling keys in the encryption operation are mainly related to plain text. At the same time, the system is more resistant to selective plain text attacks; it also improves the sensitivity of decryption keys. With the application of phase truncation, the key space expanded and the security of the cryptographic system is enhanced. The efficacy of the system is calculated by evaluating the estimated error between the input and retrieved images. The proposed technique provides innumerable security keys and is robust against various potential attacks. Numerical simulations verify the effectiveness and security of the proposed technique.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.