Abstract
Federated learning (FL) is a machine learning technique in which a large number of clients collaborate to train models without sharing private data. However, FL’s integrity is vulnerable to unreliable models; for instance, data poisoning attacks can compromise the system. In addition, system preferences and resource disparities preclude fair participation by reliable clients. To address this challenge, we propose a novel client selection strategy that introduces a security‐fairness value to measure client performance in FL. The value in question is a composite metric that combines a security score and a fairness score. The former is dynamically calculated from a beta distribution reflecting past performance, while the latter considers the client’s participation frequency in the aggregation process. The weighting strategy based on the deep deterministic policy gradient (DDPG) determines these scores. Experimental results confirm that our method fairly effectively selects reliable clients and maintains the security and fairness of the FL system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.