Abstract
Smart meters are part of the Advanced Measurement Infrastructure (AMI) system in the smart grid. It facilitates data transfer between consumers and electricity suppliers (ES). However, the mass deployment of smart meters (SM) brings heavy overhead to grid operation and poses serious privacy threats. To this end, this paper proposes a secure and efficient data aggregation scheme of cloud–edge collaboration smart meters. At first, we standardize the users’ historical electricity load features and use the improved K-Means clustering algorithm to calculate the Euclidean distance between feature vectors to obtain the classification results of users’ load features. On this basis, ES generates relevant parameters to encrypt meter data and protect users’ data privacy based on classification results. The aggregator (Ag) performs the data aggregation, generates the overall signature using the Schnorr aggregation signature method, and sends it to the cloud server (CS). The ES queries the CS to obtain data and parses it to realize the customer billing service. Meanwhile, this paper executes a series of experiments, and the results show that the proposed scheme exhibits significant advantages in privacy protection and system operation efficiency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Electrical Power and Energy Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.