Abstract
Public key infrastructure (PKI) is the most widely used security mechanism for securing communications over the network. However, there are known performance issues, making it unsuitable for use in vehicular networks. In this paper, we propose a secure and authenticated key management protocol (SA-KMP) to overcome the shortcomings of the PKI. The SA-KMP scheme distributes repository containing the bindings of the en-tity's identity and its corresponding public key to each vehicle and road side unit. By doing so, certificate exchanges and certificate revocation lists are eliminated. Furthermore, the SA-KMP scheme uses symmetric keys derived based on a 3-D-matrix-based key agreement scheme to reduce the high computational costs of using asymmetric cryptography. We demonstrate the efficiency of the SA-KMP through performance evaluations in terms of transmission and storage overhead, network latency, and key generation time. Analytical results show that the SA-KMP is more scalable and outperforms the certificate-based PKI. Simulation results indicate that the key generation time of the SA-KMP scheme is less than that of the existing Elliptic Curve Diffie--Hellman and Diffie--Hellman protocols. In addition, we use Proverif to prove that the SA-KMP scheme is secure against an active attacker under the Dolev and Yao model and further show that the SA-KMP scheme is secure against denial of service, collusion attacks, and a wide range of other malicious attacks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.