Abstract

The development of high-tech, dim, small targets, such as drones and cruise missiles, brings great challenges to radar multi-target tracking (MTT), making it necessary to extend the beam dwell time to obtain a high signal-to-noise ratio (SNR). In order to solve the problem of radar sampling time variation exacerbated by extending the beam dwell time when detecting weak targets, a sector-matching (SM) PHD filter is proposed, which combines the actual radar system with a PHD filter and quantifies the relationship between the beam dwell time, the false alarm rate and the detection probability. The proposed filter divides the scanning area into small sectors to obtain actual multi-target measurement times and rederives the prediction and update steps based on the actual sampling time. Furthermore, a state correction step is added before state extraction. Applying the SM structure to the basic Gaussian mixture PHD (GM-PHD) filter and labeled GM-PHD filter, the simulation results demonstrate that the proposed structure can improve the accuracy of multi-weak-target state estimation in the dense clutter and can continuously generate explicit trajectories. The overall real-time performance of the proposed filter is similar to that of the PHD filter.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call