Abstract

This work proposes a numerical scheme for a class of time-fractional convection–reaction–diffusion problems with a time lag. Time-fractional derivative is considered in the Caputo sense. The numerical scheme comprises the discretization technique given by Crank and Nicolson in the temporal direction and the spline functions with a tension factor are used in the spatial direction. Through the von Neumann stability analysis, the scheme is shown conditionally stable. Moreover, a rigorous convergence analysis is presented through the Fourier series. Two test problems are solved numerically to verify the effectiveness of the proposed numerical scheme.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.