Abstract
Summary Inference in the presence of nuisance parameters is often carried out by using the χ2-approximation to the profile likelihood ratio statistic. However, in small samples, the accuracy of such procedures may be poor, in part because the profile likelihood does not behave as a true likelihood, in particular having a profile score bias and information bias which do not vanish. To account better for nuisance parameters, various researchers have suggested that inference be based on an additively adjusted version of the profile likelihood function. Each of these adjustments to the profile likelihood generally has the effect of reducing the bias of the associated profile score statistic. However, these adjustments are not applicable outside the specific parametric framework for which they were developed. In particular, it is often difficult or even impossible to apply them where the parameter about which inference is desired is multidimensional. In this paper, we propose a new adjustment function which leads to an adjusted profile likelihood having reduced score and information biases and is readily applicable to a general parametric framework, including the case of vector-valued parameters of interest. Examples are given to examine the performance of the new adjusted profile likelihood in small samples, and also to compare its performance with other adjusted profile likelihoods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Royal Statistical Society Series B: Statistical Methodology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.