Abstract

Based on the theories of inertial systems, a second-order accelerated neurodynamic approach is designed to solve a distributed convex optimization with inequality and set constraints. Most of the existing approaches for distributed convex optimization problems are usually first-order ones, and it is usually hard to analyze the convergence rate for the state solution of those first-order approaches. Due to the control design for the acceleration, the second-order neurodynamic approaches can often achieve faster convergence rate. Moreover, the existing second-order approaches are mostly designed to solve unconstrained distributed convex optimization problems, and are not suitable for solving constrained distributed convex optimization problems. It is acquired that the state solution of the designed neurodynamic approach in this paper converges to the optimal solution of the considered distributed convex optimization problem. An error function which demonstrates the performance of the designed neurodynamic approach, has a superquadratic convergence. Several numerical examples are provided to show the effectiveness of the presented second-order accelerated neurodynamic approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.