Abstract
We prove an upper bound for the ground state energy of a Bose gas consisting of N hard spheres with radius mathfrak {a}/N, moving in the three-dimensional unit torus Lambda . Our estimate captures the correct asymptotics of the ground state energy, up to errors that vanish in the limit N rightarrow infty . The proof is based on the construction of an appropriate trial state, given by the product of a Jastrow factor (describing two-particle correlations on short scales) and of a wave function constructed through a (generalized) Bogoliubov transformation, generating orthogonal excitations of the Bose–Einstein condensate and describing correlations on large scales.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.