Abstract
The purpose of this paper is to introduce a second-order perturbation theory derived from the mathematical framework of the quasiparticle-based multi-reference coupled-cluster approach (Rolik and Kallay in J Chem Phys 141:134112, 2014). The quasiparticles are introduced via a unitary transformation which allows us to represent a complete active space reference function and other elements of an orthonormal multi-reference basis in a determinant-like form. The quasiparticle creation and annihilation operators satisfy the fermion anti-commutation relations. As the consequence of the many-particle nature of the applied unitary transformation these quasiparticles are also many-particle objects, and the Hamilton operator in the quasiparticle basis contains higher than two-body terms. The definition of the new theory strictly follows the form of the single-reference many-body perturbation theory and retains several of its beneficial properties like the extensivity. The efficient implementation of the method is briefly discussed, and test results are also presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.