Abstract
A linearized three-level difference scheme on nonuniform meshes is derived by the method of the reduction of order for the Dirichlet boundary value problem of the nonlinear parabolic systems. It is proved that the difference scheme is uniquely solvable and second order convergent in L∞-norm. © 2003 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 19: 638–652, 2003
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Numerical Methods for Partial Differential Equations
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.