Abstract

A second-order accurate Crank–Nicolson finite difference method on uniform meshes is proposed and analyzed for a class of nonlinear partial integro-differential equations with weakly singular kernels. The first-order time derivative is approximated by using a Crank–Nicolson time-stepping technique, and the singular integral term is treated by a product averaged integration rule, which preserves the positive semi-definite property of the singular integral operator. In order to obtain a fully discrete method, the standard central finite difference approximation is used to discretize the second-order spatial derivative, and a suitable second-order discretization is adopted for the nonlinear convection term. The solvability, stability and convergence of the method are rigorously proved by the discrete energy method, the positive semi-definite property of the associated quadratic form of the method and a perturbation technique. The error estimation shows that the method has the optimal second-order convergence in time and space for non-smooth solutions. Newton’s iterative method and its algorithm implementation are presented to solve the resulting nonlinear system. Numerical results confirm the theoretical convergence result and show the effectiveness of the method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.