Abstract

We study a second-order two-grid scheme fully discrete in time and space for solving the Navier–Stokes equations. The two-grid strategy consists in discretizing, in the first step, the fully non-linear problem, in space on a coarse grid with mesh-size H and time step Δt and, in the second step, in discretizing the linearized problem around the velocity u H computed in the first step, in space on a fine grid with mesh-size h and the same time step. The two-grid method has been applied for an analysis of a first order fully-discrete in time and space algorithm and we extend the method to the second order algorithm. This strategy is motivated by the fact that under suitable assumptions, the contribution of u H to the error in the non-linear term, is measured in the L 2 norm in space and time, and thus has a higher-order than if it were measured in the H 1 norm in space. We present the following results: if h 2 = H 3 = (Δt)2, then the global error of the two-grid algorithm is of the order of h 2, the same as would have been obtained if the non-linear problem had been solved directly on the fine grid.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.