Abstract

The inverse obstacle scattering problem we are interested is to reconstruct the image of an innitely long homogeneous dielectric cylinder from the far eld pattern for scattering of a time-harmonic E-polarized electromagnetic plane wave. We extend the approach suggested by Kress and Lee [18] that combines the ideas of Hettlich and Rundell [10] and Johansson and Sleeman [14] for the case of the inverse problem for a perfectly conducting scatterer to the case of penetrable scatterer. The inverse problem is depended on a system of non-linear boundary integral equations associated with a single layer approach to solve the direct scattering problem. We show the mathematical foundations of the method and illustrate its feasibility by numerical examples. Keywords: Helmholtz equation; Inverse scattering; Transmission boundary condition; Non-linear integral equations; Gauss-Newton iteration methods; Single-layer approach. DOI: 10.17350/HJSE19030000013 Full Text:

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.