Abstract

Although only a subset of protein enzymes depend on the presence of a metal ion for their catalytic function, all naturally occurring RNA enzymes require metal ions to stabilize their structure and for catalytic competence. In the self-splicing group I intron from Tetrahymena thermophila, several divalent metals can serve structural roles, but only Mg2+ and Mn2+ promote splice-site cleavage and exon ligation. A study of a ribozyme reaction analogous to 5'-splice-site cleavage by guanosine uncovered the first metal ion with a definitive role in catalysis. Substitution of the 3'-oxygen of the leaving group with sulphur resulted in a metal-specificity switch, indicating an interaction between the leaving group and the metal ion. Here we use 3'-(thioinosylyl)-(3'-->5')-uridine, IspU, as a substrate in a reaction that emulates exon ligation. Activity requires the addition of a thiophilic metal ion (Cd2+ or Mn2+), providing evidence for stabilization of the leaving group by a metal ion in that step of splicing. Based on the principle of microscopic reversibility, this metal ion activates the nucleophilic 3'-hydroxyl of guanosine in the first step of splicing, supporting the model of a two-metal-ion active site.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.