Abstract

Celiac disease (CD) is an autoimmune permanent enteropathy that is triggered in susceptible individuals after the ingestion of gluten, a storage protein fraction presents in wheat, rye and barley endosperm. Specific gluten peptides can bind to HLA-DQ2/8 and induce lamina propria CD4+ T cell responses causing damage of the small intestine mucosa. Recent studies suggested that beside immunodominant and toxic epitopes, wheat gluten also contains epitopes capable of preventing the mucosal response in vitro. Among them, a decapeptide (QQPQDAVQPF) from wheat was reported to have an antagonist effect on the agglutination of K562(S) cells and celiac T-cell activation, although the corresponding nucleotidic sequence remained unknown. This study was therefore designed to clone the sequence encoding the protein carrying the decapetide with CD protective properties. A ω-secalin gene encoding containing the decapeptide QQPQRPQQPF was isolated. Although the decapeptide was not identical to the one previously described, QQPQRPQQPF showed the same capability to prevent K562(S) cell agglutination and celiac mucosa immune activation induced by toxic gliadins. The ω-secalin gene was found in wheat carrying the wheat–rye chromosomal translocations 1BL.1RS. The identification of this immunomodulatory gliadin sequence, naturally occurring in cultivars of wheat toxic for celiac patients, might offer new therapeutic strategies for CD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.