Abstract

Dark matter particles cannot only be detected directly in laboratories, but also indirectly by their annihilation products. Previous predictions of the neutrino flux from WIMP annihilation in the Earth and the Sun have assumed that galactic dark matter is distributed according to the SHM. Although the dark disc has a local density comparable to the dark halo, its higher phase space density at low velocities greatly enhances capture rates in the Sun and Earth. For typical dark disc properties, the resulting muon flux from the Earth is increased by three orders of magnitude over the SHM, while for the Sun the increase is one order of magnitude. This significantly increases the prospects of neutrino telescopes to fix or constrain parameters in WIMP models. The flux from the Earth is extremely sensitive to the detailed properties of the dark disc, while the flux from the Sun is more robust.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.