Abstract

Several radio galaxies are known that show radio morphological signatures that are best interpreted as restarting of nuclear activity after a period of quiescence. The conditions surrounding the phenomenon of nuclear recurrence are not understood. In this paper we have attempted to address this question by examining the nuclear fuelling characteristics in a sample of restarting radio galaxies. We have examined the detection rate for molecular gas in a representative sample of nine restarting radio galaxies, for seven of which we present new upper limits to the molecular gas mass derived from CO line observations we made with the IRAM 30-m telescope. We derive a low CO detection rate for the relatively young restarted radio galaxies suggesting that the cessation of the nuclear activity and its subsequent restarting may be a result of instabilities in the fuelling process rather than a case of depletion of fuel followed by a recent fuel acquisition. It appears that abundant molecular gas content at the level of few 10 8 -10 9 M ⊙ does not necessarily accompany the nuclear restarting phenomenon. For comparison we also discuss the molecular gas properties of five normal giant radio galaxies, three of which we observed using Swedish-ESO Millimetre Telescope (SEST). Despite obvious signs of interactions and nuclear dust discs none of them has been found to host significant quantities of molecular gas.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call