Abstract

The evolution of brown dwarfs from L to T spectral types is one of the least understood aspects of the ultracool population, partly for lack of a large, well-defined, and well-characterized sample in the L/T transition. To improve the existing census, we have searched $\approx$28,000 deg$^2$ using the Pan-STARRS1 and WISE surveys for L/T transition dwarfs within 25 pc. We present 130 ultracool dwarf discoveries with estimated distances $\approx9-130$ pc, including 21 that were independently discovered by other authors and 3 that were previously identified as photometric candidates. Seventy-nine of our objects have near-IR spectral types of L6-T4.5, the most L/T transition dwarfs from any search to date, and we have increased the census of L9-T1.5 objects within 25 pc by over 50%. The color distribution of our discoveries provides further evidence for the "L/T gap," a deficit of objects with $(J-K)_{\rm MKO}\approx0.0-0.5$ mag in the L/T transition, and thus reinforces the idea that the transition from cloudy to clear photospheres occurs rapidly. Among our discoveries are 31 candidate binaries based on their low-resolution spectral features. Two of these candidates are common proper motion companions to nearby main sequence stars; if confirmed as binaries, these would be rare benchmark systems with the potential to stringently test ultracool evolutionary models. Our search also serendipitously identified 23 late-M and L dwarfs with spectroscopic signs of low gravity implying youth. Finally, we identify 10 candidate members of nearby young moving groups (YMG) with spectral types L7-T4.5, including three showing spectroscopic signs of low gravity. If confirmed, any of these would be among the coolest known YMG members and would help to determine the effective temperature at which young brown dwarfs cross the L/T transition. (Abridged)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.