Abstract
In the North Sea natural gas production field at Sleipner, CO{sub 2} is being separated from natural gas and injected into an underground saline aquifer, known as the Utsira formation, for environmental purposes. In this study, gravity measurements were made over the Sleipner CO{sub 2} injection site in 2002 and again in 2005 on top of 30 concrete benchmarks on the seafloor to study the behavior and physical properties of the injected CO{sub 2}. As the gas is injected, pore space water is replaced by gas, altering the bulk density of the formation. This results in a change in gravitational acceleration observed on the overlying sea floor. Our gravity measurements show a repeatability of 4.3 {micro}Gal for 2003 and 3.5 {micro}Gal for 2005. Forward models of the gravity change are calculated based on both 3-D seismic data and reservoir simulation models from other studies. These forward models indicate that the magnitude of maximum gravity change is primarily related to CO{sub 2} density rather than flow geometry. The time-lapse gravity observations best fit a high temperature forward model based on the seismically determined CO{sub 2} geometry, suggesting that the 3-D reflection seismics are imaging the geometry of the injected CO{sub 2},more » and that the in situ CO{sub 2} density is around 530 kg/m{sup 3}. Uncertainty in determining the average density using this technique is estimated to be {+-}65 kg/m{sup 3} (95% confidence), however, additional seismic surveys are needed before final conclusions can be drawn. Future gravity measurements will put better constraints on the CO{sub 2} density and continue to map out the CO{sub 2} flow.« less
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.