Abstract
The determination of the finite mobility of a linkage boils down to the analysis of its configuration space (c-space). Since a global analysis is not feasible in general (but only for particular cases), the research focused on methods for a local analysis. Past research has in particular addressed the approximation of finite curves in c-space (i.e. finite motions). No universal method for the approximation of the c-space itself has been reported. In this paper a generally applicable formulation of the equations defining the higher-order local approximation of the c-space as well as the set of points where the Jacobian has a certain rank are presented. To this end, algebraic formulations of the higher-order differential of the constraint mapping (defining the loop closure) and of the Jacobian minors of arbitrary order are introduced. The respective local approximation is therewith given in terms of a low-order polynomial system. Results are shown for a simple planar 4-bar linkage and a planar three-loop linkage. Since the latter exhibits a cusp singularity it cannot be treated by the local analysis methods proposed thus far, which are based on approximating finite curves.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.