Abstract

Salinity as well as drought are increasing problems in agriculture. Durum wheat (Triticum turgidum L. ssp. durum Desf.) is relatively salt sensitive compared with bread wheat (Triticum aestivum L.), and yields poorly on saline soil. Field studies indicate that roots of durum wheat do not proliferate as extensively as bread wheat in saline soil. In order to look for genetic diversity in root growth within durum wheat, a screening method was developed to identify genetic variation in rates of root growth in a saline solution gradient similar to that found in many saline fields. Seedlings were grown in rolls of germination paper in plastic tubes 37 cm tall, with a gradient of salt concentration increasing towards the bottom of the tubes which contained from 50-200 mM NaCl with complete nutrients. Seedlings were grown in the light to the two leaf stage, and transpiration and evaporation were minimized so that the salinity gradient was maintained. An NaCl concentration of 150 mM at the bottom was found suitable to identify genetic variation. This corresponds to a level of salinity in the field that reduces shoot growth by 50% or more. The screen inhibited seminal axile root length more than branch root length in three out of four genotypes, highlighting changes in root system architecture caused by a saline gradient that is genotype dependent. This method can be extended to other species to identify variation in root elongation in response to gradients in salt, nutrients, or toxic elements.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.