Abstract

BackgroundAlthough many cervical cytology diagnostic support systems have been developed, it is challenging to classify overlapping cell clusters with a variety of patterns in the same way that humans do. In this study, we developed a fast and accurate system for the detection and classification of atypical cell clusters by using a two‐step algorithm based on two different deep learning algorithms.MethodsWe created 919 cell images from liquid‐based cervical cytological samples collected at Sapporo Medical University and annotated them based on the Bethesda system as a dataset for machine learning. Most of the images captured overlapping and crowded cells, and images were oversampled by digital processing. The detection system consists of two steps: (1) detection of atypical cells using You Only Look Once v4 (YOLOv4) and (2) classification of the detected cells using ResNeSt. A label smoothing algorithm was used for the dataset in the second classification step. This method annotates multiple correct classes from a single cell image with a smooth probability distribution.ResultsThe first step, cell detection by YOLOv4, was able to detect all atypical cells above ASC‐US without any observed false negatives. The detected cell images were then analyzed in the second step, cell classification by the ResNeSt algorithm, which exhibited average accuracy and F‐measure values of 90.5% and 70.5%, respectively. The oversampling of the training image and label smoothing algorithm contributed to the improvement of the system's accuracy.ConclusionThis system combines two deep learning algorithms to enable accurate detection and classification of cell clusters based on the Bethesda system, which has been difficult to achieve in the past. We will conduct further research and development of this system as a platform for augmented reality microscopes for cytological diagnosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.