Abstract

BackgroundFixation failure is a relatively common sequela of surgical management of proximal humerus fractures (PHF). The purpose of this study is to understand the current state of the literature with regard to the biomechanical testing of proximal humerus fracture implants.MethodsA scoping review of the proximal humerus fracture literature was performed, and studies testing the mechanical properties of a PHF treatment were included in this review. Descriptive statistics were used to summarize the characteristics and methods of the included studies.Results1,051 proximal humerus fracture studies were reviewed; 67 studies met our inclusion criteria. The most common specimen used was cadaver bone (87 %), followed by sawbones (7 %) and animal bones (4 %). A two-part fracture pattern was tested most frequently (68 %), followed by three-part (23 %), and four-part (8 %). Implants tested included locking plates (52 %), intramedullary devices (25 %), and non-locking plates (25 %). Hemi-arthroplasty was tested in 5 studies (7 %), with no studies using reverse total shoulder arthroplasty (RTSA) implants. Torque was the most common mode of force applied (51 %), followed by axial loading (45 %), and cantilever bending (34 %). Substantial testing diversity was observed across all studies.ConclusionsThe biomechanical literature was found to be both diverse and heterogeneous. More complex fracture patterns and RTSA implants have not been adequately tested. These gaps in the current literature will need to be addressed to ensure that future biomechanical research is clinically relevant and capable of improving the outcomes of challenging proximal humerus fracture patterns.Electronic supplementary materialThe online version of this article (doi:10.1186/s12891-015-0627-x) contains supplementary material, which is available to authorized users.

Highlights

  • Fixation failure is a relatively common sequela of surgical management of proximal humerus fractures (PHF)

  • Using a combination of keywords and medical subject heading (MeSH) terms related to proximal humerus fractures, we searched the following electronic databases: Medline, Excerpta Medica Database (EMBASE), Cumulative Index of Nursing and Allied Health Literature (CINAHL), Cochrane Database of Systematic Reviews (CDSR), Proquest, Web of Science, Society of Automotive Engineers (SAE) digital library, and Transportation Research Board’s Transport Research International Documentation (TRID) database

  • 1,051 proximal humerus fracture studies were included in our database

Read more

Summary

Introduction

Fixation failure is a relatively common sequela of surgical management of proximal humerus fractures (PHF). The purpose of this study is to understand the current state of the literature with regard to the biomechanical testing of proximal humerus fracture implants. Proximal humerus fractures (PHF) are a challenging injury in need of more reliable surgical techniques and improved health-related outcomes. The complications and long recovery times for PHFs. Biomechanical modeling provides controlled testing data to support new surgical implants and novel treatment strategies. There has been an increasing focus on biomechanical modeling to test the properties and limits of various techniques and implants used to treat proximal humerus fractures. Since there are numerous surgical implants and PHF patterns that could be tested, the biomechanical literature is potentially a broad landscape of diverse research that has not been previously summarized

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call