Abstract

Chitosan is a widely available polymer with a reasonably high abundance, as well as a sustainable, biodegradable, and biocompatible material with different functional groups that are used in a wide range of operations. Chitosan is frequently employed in widespread applications such as environmental remediation, adsorption, catalysts, and drug formulation. The goal of this review is to discuss the potential applications of chitosan and its chemically modified solids as a catalyst in biodiesel production. The existing manuscripts are integrated based on the nature of materials used as chitosan and its modifications. A short overview of chitosan's structural characteristics, properties, and some ideal methods to be considered in catalysis activities are addressed. This article includes an analysis of a chitosan-based scientometric conducted between 1975 and 2023 using VOS viewer 1.6.19. To identify developments and technological advances in chitosan research, the significant scientometric features of yearly publication results, documents country network, co-authorship network, documents funding sponsor, documents institution network, and documents category in domain analysis were examined. This review covers a variety of organic transformations and their effects, including chitosan reactions against acids, bases, metals, metal oxides, organic compounds, lipases, and Knoevenagel condensation. The catalytic capabilities of chitosan and its modified structures for producing biodiesel through transesterification reactions are explored in depth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.