Abstract

In this article, we consider the numerical method for solving the Schrödinger equations via Phragmén–Lindelöf inequalities under the order induced by a symmetric cone with the function involved being monotone. Based on the Phragmén–Lindelöf inequalities, the underlying system of inequalities is reformulated as a system of smooth equations, and a Schrödinger-type method is proposed to solve it iteratively so that a solution of the system of the Schrödinger equations is found. By means of the Schrödinger type inequalities, the algorithm is proved to be well defined and to be globally convergent under weak assumptions and locally quadratically convergent under suitable assumptions. Preliminary numerical results indicate that the algorithm is effective.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.